### **SOLAR RADIO NOISE STORM AT 150.9 MHZ**

# FROM NANÇAY RADIOHELIOGRAPH FEBRUARY 2008

|     | HELIOGRAPHICS POSITIONS<br>MEAN VALUES <sup>1</sup> |     | IMP <sup>2</sup> | OBSERVIN   | G TIME <sup>3</sup> |
|-----|-----------------------------------------------------|-----|------------------|------------|---------------------|
| DAY | E-W                                                 | S-N |                  | START( UT) | END(UT)             |

### SOLAR RADIO NOISE STORM AT 327 MHZ

## FROM NANÇAY RADIOHELIOGRAPH

### **FEBRUARY 2008**

|     | HELIOGRAPHICS POSITIONS<br>MEAN VALUES <sup>1</sup> |     | $IMP^2$ | OBSERVIN  | IG TIME <sup>3</sup> |
|-----|-----------------------------------------------------|-----|---------|-----------|----------------------|
| DAY | E-W                                                 | S-N |         | START(UT) | END(UT)              |

#### OTHERS DAYS: NO DETECTABLE NOISE STORM

- For the days marked by an asterisk, intense ionospheric gravity waves are observed during the whole day. Without a mode detailed analysis leadind to increase uncertainties in the deviation , the positions which are indicated are estimated within 0.2 R
- \*\* Following a large burst
- \*\*\* importance not well determined due to the proximity off the very strong other source
- \*\*\*\* no flux measurements available

<sup>1</sup> POSITIVE E-W AND S-N COORDINATES CORRESPOND TO THE N-W QUADRANT

 $^2$  IMP1: FLUX< 5 SFU  $\,$  IMP2: 5< FLUX < 20 SFU  $\,$  IMP3: 20< FLUX <100 SFU IMP4: 100< FLUX <300 SFU  $\,$  IMP5> 300 SFU

<sup>3</sup> E NOISE STORM IN PROGRESS AT THE BEGINNING OF THE NANÇAY OBSERVATIONS

D NOISE STORM IN PROGRESS AT THE END OF THE NANCAY OBSERVATIONS